Investigating the evolutionary assembly of a Mediterranean biodiversity hotspot: deep phylogenetic signal in the distribution of eudicots across elevational belts

Abstract

Access the paper here. Aim: To reconstruct the historical assembly of the eudicot flora of Mediterranean sierras by examining compositional (CBD), phylogenetic (PBD) and functional (FBD) beta diversity between elevational belts among disjunct mountain ranges (sierras), and relating these measures of turnover to environmental and geographical distances. Location Baetic ranges, Andalusia, southern Spain. Methods: We compiled eudicot species and subspecies (entities) checklists for three elevational belts within each of eight sierras of Andalusia (sites) and tested for non-random patterns of PBD and FBD of all entities and of endemic entities separately among sites between and within sierras. Multiple regression on distance matrices was used to determine the respective contribution of climate, lithology and geographical distance to CBD, PBD and FBD. Finally, we decomposed PBD into the turnover and nestedness components of beta diversity, and quantified the phylogenetic diversity (PD) within sites. Results: The observed PBD and FBD among elevational belts within sierras for all entities were generally higher than expected based on their respective null distributions, whereas CBD among elevational belts within sierras was similar or even lower than between sierras. In contrast, the observed PBD and FBD for endemics were non-significant in most of the comparisons. Temperature-related variables best explained patterns of CBD, PBD and FBD for all entities, whereas lithology and geographical distance were the main drivers of endemic CBD. The observed PBD among elevational belts within sierras was mainly attributable to differences in PD rather than true turnover. Main conclusions: There is strong structuring of plant lineages along elevational gradients in the Baetic range, probably due to habitat filtering acting on life forms and character syndromes that show strong phylogenetic signal. The differentiation of the endemic flora that contributed to the emergence of this western Mediterranean biodiversity hotspot was probably driven by geographical isolation and/or by repeated specialization to contrasting lithologies.

Publication
J. Biogeogr.

Related